Erratum to ‘‘Proof of a polynomial conjecture” (Proc. Amer. Math. Soc. {\bf 44} (1974), 58–60)
نویسندگان
چکیده
منابع مشابه
Proof of a Chromatic Polynomial Conjecture
In this paper, all graphs considered are simple graphs. We always suppose that G is a graph. Let V(G), E(G), v(G), and e(G) be the vertex set, edge set, order and number of edges of G. For a positive integer *, a *-colouring of G is a mapping f : V(G) [1, ..., *] such that f (x){ f ( y) whenever x and y are adjacent in G. Let P(G, *) denote the number of *-colourings in G. It is well known that...
متن کاملPartial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کاملCorrection to "on Matrices Whose Real Linear Combinations Are Nonsingular"
2. -, Rings with a pivotal monomial, Proc. Amer. Math. Soc. 9 (1958), 635642. 3. L. P. Belluce and S. K. Jain, Prime rings having a one-sided ideal satisfying a polynomial identity, Abstract 614-89, Notices Amer. Math. Soc. 11 (1964), p. 554. 4. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. Vol. 37, Amer. Math. Soc, Providence, R. I., 1956. 5. I. Kaplansky, Rings with a polyno...
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملCommon Fixed Points and Invariant Approximations for Cq-commuting Generalized nonexpansive mappings
Some common fixed point theorems for Cq-commuting generalized nonexpansive mappings have been proved in metric spaces. As applications, invariant approximation results are also obtained. The results proved in the paper extend and generalize several known results including those of M. Abbas and J.K. Kim [Bull. Korean Math. Soc. 44(2007) 537-545], I. Beg, N. Shahzad and M. Iqbal [Approx. Theory A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1976
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1976-0409743-3